
LIGHTWEIGHT STRUCTURES IN CIVIL ENGINEERING - CONTEMPORARY PROBLEMS - XXIV LSCE 2018 95 

LIGHTWEIGHT STRUCTURES in CIVIL ENGINEERING 
CONTEMPORARY PROBLEMS 

Monograph from Scientific Seminar 

Organized by Polish Chapters of 

International Association for Shell and Spatial Structures 

Lodz University of Technology  
Faculty of Civil Engineering, Architecture and Environmental 

Engineering 

XXIV LSCE  

Łódź, 7th of December 2018 (Friday) 

PROBABILISTIC ANALYSIS OF STRUCTURE MODELS 

USING TARGET RANDOM SAMPLING (TRS) 

M. Oziębło
1)

, K. Winkelmann
2)

, J.Górski
3)

1) Gdańsk University of Technology, POLAND, magdalena.ozieblo@pg.edu.pl 
2) Gdańsk University of Technology, POLAND, karolwin@pg.edu.pl 

2) Gdańsk University of Technology, POLAND, jgorski@pg.edu.pl 

 ABSTRACT: The work presents testing methods of sensitivity and reliability of mechanical or structural systems. All computations 

concerned the case of Zigler system, a simple model of a compressed column involving two random variables only. A conclusion was 

drawn that the standard Monte Carlo (MC) method, its reduction variants, the response surface method (RSM) and target random sampling 

(TRS) allow to assess the sensitivity of structural response to the variation of random structural parameters. Sensitivity assessment was 

proposed on the basis of Sobol indices and the analysis of limit state surface intersections.  
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1. INTRODUCTION 

In recent times the probabilistic methods become more and more 

decisive in structural analysis and design. While the methods are 

majorly aimed at structural reliability estimation, attempts are made of 

their enhancement to the tasks of optimization and sensitivity analysis. 

The latter issue is the one the work is focused on. 

The analysis of both structural reliability and sensitivity is conducted by 

means of a series of methods, of a classic status, e.g. Monte Carlo (MC) 

simulation incorporating variance-reduction techniques. Other 

widespread methods in these fields are: polynomial chaos expansion, 

Linear Regression Analysis (LRA), Analysis of Variance (ANOVA), 

Response Surface Method (RSM) and many others. 

The domain of sensitivity analysis methods splits into local and global 

approaches (Ref. 1). Sensitivity assessment due to a single parameter 

change is possible with the help of: Differential Analysis (DA), the One-

At-a-Time technique (OAT), Importance Factors (IF) or Sensitivity 

Index (SI) (Ref. 2). While a nonlinear model is valid or high differences 

occur between the modification results of different parameters local 

methods should be replaced by the global ones (Ref. 3). 

There does not exist a single ultimate sensitivity measure. Various 

methods incorporate a linear or linearized limit state function to capture 

linear impact of basic variables. Here sensitivity factors are equal to 

partial derivatives of the limit state function with respect to basic 

variables at either the mean value point or the design point (Ref. 4). 

There was Sobol who proposed one of the most advanced sensitivity 

indices (Ref. 5). Probabilistic sensitivity of structural limit states with 

the use of histograms is displayed e.g. in Ref. 6. 

The stochastic sensitivity methods allow to analyse a broad domain of 

structural types. Attention is paid to imperfection-prone structures, e.g. 

truss and framed structures analysed in Refs 7-14 or thin-walled 

members (Refs 15-19). A vast literature on plates and shells was not 

considered here. Other fields are worth noting too, e.g. fracture 

mechanics (Ref. 20) or sensitivity analysis of drilling platforms 

(Ref. 21). 

The work involves Sobol (Ref. 5) sensitivity index determination, i.e. 

both cases: the first order and the total sensitivity index. The sensitivity 

indices were determined on the basis of curves - intersection lines of 

structural response surfaces and the planes of constant design variable 

values. The work employs a classic Ziegler column case to test the 

chosen approaches. 

2. NUMERICAL EXAMPLES – ZIEGLER COLUMN

Ziegler columns (Fig. 1) were analysed in a number of papers, e.g. Refs 

22, 23. It concerns an axially loaded ( )P  column clamped at its 

bottom. Two hinges are introduced in the system: the first at the base, 

the second at the mid-height, both spring-supported by constant 

stiffness springs 
1k  and 

2 ,k  respectively (Fig. 1). The spring stiffnesses 

are assumed Gaussian random variables 1 1 1(1 ),k k = +  2 2 2(1 ),k k = +  

of the following mean values 
1

0.0m =  and standard deviations 

1
0.2. =  

Fig.1 Ziegler column (Ref. 24) 

The explicit limit state function takes the form 

( ) ( ) ( )1 2 1 1 2 2

1
, 1 1

2
g k k   = + + + −

(1) 

( ) ( )
2 22 2

1 1 2 2

1
1 4 1

2
k k  − + + + −  
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Assuming that 
1 2 1 2 1 [kNm / rad],k k k k= = = =  1 mL =  and 1 kNP =

the limit load multiplier was equal to 0,75 0,375(3 5).E = = −  It 

was finally assumed that the variables 
1  and

2  are uncorrelated 

(while Gaussian, they were independent). 

3. ANALYSIS OF THE RESULTS SCATTER

The first method allowing for a simple and straightforward analysis of 

the model mechanical response is the so-called scatter image technique. 

Fig. 2 presents the relations between the system response variable g and 

stiffnesses: 1k and 2 .k  
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Fig. 2 The shape of result scatter cloud due to variables 1k and 2 .k  

In the case of each cloud of points the estimator of linear correlation 

coefficient was determined by means of the relation:  

( )( )

( ) ( )
m

N

mi m i i

i=1
k g

N N
2 2

mi m i i

i=1 i=1

k - k g - g

r =

k - k g - g



 

,  1, 2m =  (2) 

In the case of scatter clouds of the variables 1k and 2 .k  the coefficient 

values were equal rk1g = 0.899 and rk2g = 0.393 respectively. 

In Figure 2 the red marks refer to the mean values of the response 

variable based on samples related to selected ranges of the analysed 

stiffness. The variability domain was divided into eight equal sub-

domains. The approximation straight line was drawn according to the 

obtained points, the line slope is an attempt to visually assess the model 

sensitivity. The increase of the slope marks the sensitivity rise to the 

variation of the related parameter. 

The clouds and correlation coefficients make it possible to conclude that 

stiffness 1k  is the variable the system is highly sensitive to. The shape 

of the point cloud in the first image is relatively easy to interpret while 

the cloud of points in the second figure resembles a uniform 

distribution. 

4. THE SOBOL SENSITIVITY INDICES 

The Sobol sensitivity indices of the first order ( )iS  and of total 

sensitivity ( )
iTS  were determined in the case of stiffnesses 

1k  and 
2.k  

The first order sensitivity index 
iS  expresses a direct impact of a given 

parameter to the model response, the total sensitivity index 
iTS  accounts 

for the impact of a parameter and its interaction with the others to the 

output response. Both first order and total sensitivity indices are 

determined by the formulae: 
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where 
2

2 ( )

0

1

1 N
j

A

j

f y
N =

 
=  

 
 . 

The detailed description of formulae (3) and (4) is included in [Oziębło, 

2018]. 

The considered sensitivity indices of variables 
1k  and 

2k  based on 

formulae (3) and (4) were equal to 
1

0.7974,kS =
1

0.8369,
kTS =  and 

2
0.1898,kS =

2
0.2292,

kTS =  respectively. The results mark a 

significantly higher impact of the supporting spring stiffness on the 

system mechanical response. 

5. MONTE CARLO METHODS

In order to assess the failure probability by means of direct Monte Carlo 

method a population of 106 samples was generated. This led to the 

estimation of pf = 0.0737, the reliability index estimated as  = 1.449. 

This results serves as a reference level. 

These results were compared to the results of Monte Carlo stratified 

sampling (MC-SS). The variable space was split into 22, 32, 42, 52, 62, 

72, 82, 92, 102, 152, 202, 252 and 302 equidimensional strata. The 

reliability indices corresponding to the assumed space division were 

presented graphically in Fig. 3. In the case of maximum 900-piece 

sample space the reliability index was equal  = 1.295. 
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Fig. 3 Computational convergence of reliability index estimated by 

direct Monte Carlo sampling and response surfaces approximated by 

points - the results of four various sampling techniques 

While Monte Carlo sampling is enhanced by Latin Hypercube technique 

(MC-LHS) the variable space is split also into identical equidimensional 

strata (22, 32, 42, 52, 62, 72, 82, 92, 102, 152, 202, 252 and 302). The 

reliability index corresponding to the higher strata density in the space 

of 1000 variables is  = 1.300. The result convergence related to the 

number of samples is illustrated in Fig. 3. 
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6. THE RESPONSE SURFACE METHOD

While the curvature of the real structural response surface is high, the 

model incorporates the second-order model with interactive terms, in the 

two-variable case these terms are as follows  

( )
0

2 2

1 1 2 2 11 1 22 2 12 1 2ĝ B Bk B k B k B k B k k= + + + + +k (5) 

The response surface was approximated on the basis of computational 

points - the results of Monte Carlo sampling (direct variant and the 

enhanced MC-SS and MC-LHS variants). The response surface was 

obtained by the dedicated software RSM-Win, whose algorithm was 

presented in [Winkelmann, 2013].  

In the direct Monte Carlo sampling case the response surface was 

estimated in 19 variants - incorporating a number of 10, 20, 30, 40, 50, 

60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 

computational points. Coefficients of the polynomial (4) and reliability 

indices computed in each case were presented in Fig. 3. In the case of 

1000 realizations the index  = 1.547. 

Similar computations were conducted due to the points of Monte Carlo 

sampling enhanced by the Latin Hypercube technique. In this case for 

900 samples  = 1.555. The results corresponding to this sampling 

variant were presented in Fig. 3. 

The results presented in Fig. 3 show that the analysed Monte Carlo 

variant using 1000 realizations did not lead to the stabilized result. 

Among the methods incorporating RSM the stratified sampling predicts 

reliable results even with the use of several samples. All other RSM 

variants do not make the results stable at the sample number increase. It 

is worth pointing out that the variations concern the second or third 

decimal fractional position, thus these various approaches may be 

considered recursive and stable from an engineering viewpoint. 

7. TARGET RANDOM SAMPLING (TRS) 

The surface of system mechanical response is determined on the basis of 

TRS sampling points. In order to do so a dedicated MATLAB procedure 

was created for sample acquisition in the limit state vicinity 

1 2( , ) 0.g k k =  Applying the TRS procedure the space of variables was 

sectioned into strata (layers), to sample a single point out of each layer. 

Figure 4 presents an example of computational point generation in the 

case of 1000 layer division. 
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Fig.4. A number of 1000 computational points based on the TRS 

procedure and the view of assumed planes (red broken lines) 

intersecting the column response surface 

Based on coordinates produced by subsequent divisions the response 

surface was approximated, next reliability index was obtained. In the 

case of 1000 realizations  = 1.55913 (Fig. 3). 

Similarly to the previous computations the result vary in a low extent 

only, at a second or third decimal fractional position. The TRS method 

proves more reliable, its relevant point generation concerns the limit 

state function range only (Fig. 4). This analysis is supposed to fit more 

complex systems of greater result scatter.  

Here the system sensitivity analysis is based on the observation of the 

response surface in selected variability sections of parameters 
1k  and 

2.k  The sensitivity estimation was performed on the basis of 1000 TRS 

sampling points. The surface equation reads 

( )ˆ = -0,166 + 0,162 - 0,048 - 0,098 -

-0,044 + 0,248

2

1 2 1 2 1

2

2 1 2

g k ,k k k k

k k k
(6) 

The layout of intersecting planes is displayed in Fig. 5. 
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Fig 5 The intersection lines of the system response surface and the 

planes 
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The diagrams in Fig. 5 make us conclude that the constant value of a 

variable 1k  triggers a lower slope of the response surface. Thus it is a 

parameter to detect higher sensitivity of an input variable. These 

conclusions are confirmed by former computations of Sobol sensitivity 

indices.  

8. CONCLUSIONS 

The Target Sampling Method used in the paper is predicted to be an 

effective approach. It should be emphasized, that sensitivity analysis 

presented in the paper is only a preliminary stage to further research in 

the field of reliability of engineering structures. 
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